Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Hum Brain Mapp ; 45(5): e26675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590155

RESUMO

Isolated REM sleep behavior disorder (iRBD) is an early stage of synucleinopathy with most patients progressing to Parkinson's disease (PD) or related conditions. Quantitative susceptibility mapping (QSM) in PD has identified pathological iron accumulation in the substantia nigra (SN) and variably also in basal ganglia and cortex. Analyzing whole-brain QSM across iRBD, PD, and healthy controls (HC) may help to ascertain the extent of neurodegeneration in prodromal synucleinopathy. 70 de novo PD patients, 70 iRBD patients, and 60 HCs underwent 3 T MRI. T1 and susceptibility-weighted images were acquired and processed to space standardized QSM. Voxel-based analyses of grey matter magnetic susceptibility differences comparing all groups were performed on the whole brain and upper brainstem levels with the statistical threshold set at family-wise error-corrected p-values <.05. Whole-brain analysis showed increased susceptibility in the bilateral fronto-parietal cortex of iRBD patients compared to both PD and HC. This was not associated with cortical thinning according to the cortical thickness analysis. Compared to iRBD, PD patients had increased susceptibility in the left amygdala and hippocampal region. Upper brainstem analysis revealed increased susceptibility within the bilateral SN for both PD and iRBD compared to HC; changes were located predominantly in nigrosome 1 in the former and nigrosome 2 in the latter group. In the iRBD group, abnormal dopamine transporter SPECT was associated with increased susceptibility in nigrosome 1. iRBD patients display greater fronto-parietal cortex involvement than incidental early-stage PD cohort indicating more widespread subclinical neuropathology. Dopaminergic degeneration in the substantia nigra is paralleled by susceptibility increase, mainly in nigrosome 1.


Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , Sinucleinopatias , Humanos , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Sinucleinopatias/complicações , Sinucleinopatias/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Negra/diagnóstico por imagem , Substância Negra/patologia , Doença de Parkinson/complicações , Ferro
2.
Front Physiol ; 15: 1327407, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384795

RESUMO

Introduction: Magnetic resonance elastography (MRE) is a non-invasive method to quantify biomechanical properties of human tissues. It has potential in diagnosis and monitoring of kidney disease, if established in clinical practice. The interplay of flow and volume changes in renal vessels, tubule, urinary collection system and interstitium is complex, but physiological ranges of in vivo viscoelastic properties during fasting and hydration have never been investigated in all gross anatomical segments simultaneously. Method: Ten healthy volunteers underwent two imaging sessions, one following a 12-hour fasting period and the second after a drinking challenge of >10 mL per kg body weight (60-75 min before the second examination). High-resolution renal MRE was performed using a novel driver with rotating eccentric mass placed at the posterior-lateral wall to couple waves (50 Hz) to the kidney. The biomechanical parameters, shear wave speed (cs in m/s), storage modulus (Gd in kPa), loss modulus (Gl in kPa), phase angle (Υ=2πatanGlGd) and attenuation (α in 1/mm) were derived. Accurate separation of gross anatomical segments was applied in post-processing (whole kidney, cortex, medulla, sinus, vessel). Results: High-quality shear waves coupled into all gross anatomical segments of the kidney (mean shear wave displacement: 163 ± 47 µm, mean contamination of second upper harmonics <23%, curl/divergence: 4.3 ± 0.8). Regardless of the hydration state, median Gd of the cortex and medulla (0.68 ± 0.11 kPa) was significantly higher than that of the sinus and vessels (0.48 ± 0.06 kPa), and consistently, significant differences were found in cs, Υ, and Gl (all p < 0.001). The viscoelastic parameters of cortex and medulla were not significantly different. After hydration sinus exhibited a small but significant reduction in median Gd by -0.02 ± 0.04 kPa (p = 0.01), and, consequently, the cortico-sinusoidal-difference in Gd increased by 0.04 ± 0.07 kPa (p = 0.05). Only upon hydration, the attenuation in vessels became lower (0.084 ± 0.013 1/mm) and differed significantly from the whole kidney (0.095 ± 0.007 1/mm, p = 0.01). Conclusion: High-resolution renal MRE with an innovative driver and well-defined 3D segmentation can resolve all renal segments, especially when including the sinus in the analysis. Even after a prolonged hydration period the approach is sensitive to small hydration-related changes in the sinus and in the cortico-sinusoidal-difference.

3.
Magn Reson Med ; 91(5): 1834-1862, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38247051

RESUMO

This article provides recommendations for implementing QSM for clinical brain research. It is a consensus of the International Society of Magnetic Resonance in Medicine, Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available have generated a need in the neuroimaging community for guidelines on implementation. This article outlines considerations and implementation recommendations for QSM data acquisition, processing, analysis, and publication. We recommend that data be acquired using a monopolar 3D multi-echo gradient echo (GRE) sequence and that phase images be saved and exported in Digital Imaging and Communications in Medicine (DICOM) format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background field removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields within the brain mask should be removed using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of the whole brain as a region of interest in the analysis. The minimum acquisition and processing details required when reporting QSM results are also provided. These recommendations should facilitate clinical QSM research and promote harmonized data acquisition, analysis, and reporting.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Consenso , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Cabeça , Imageamento por Ressonância Magnética/métodos , Algoritmos , Mapeamento Encefálico/métodos
4.
Magn Reson Med ; 91(5): 2044-2056, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38193276

RESUMO

PURPOSE: Subject movement during the MR examination is inevitable and causes not only image artifacts but also deteriorates the homogeneity of the main magnetic field (B0 ), which is a prerequisite for high quality data. Thus, characterization of changes to B0 , for example induced by patient movement, is important for MR applications that are prone to B0 inhomogeneities. METHODS: We propose a deep learning based method to predict such changes within the brain from the change of the head position to facilitate retrospective or even real-time correction. A 3D U-net was trained on in vivo gradient-echo brain 7T MRI data. The input consisted of B0 maps and anatomical images at an initial position, and anatomical images at a different head position (obtained by applying a rigid-body transformation on the initial anatomical image). The output consisted of B0 maps at the new head positions. We further fine-trained the network weights to each subject by measuring a limited number of head positions of the given subject, and trained the U-net with these data. RESULTS: Our approach was compared to established dynamic B0 field mapping via interleaved navigators, which suffer from limited spatial resolution and the need for undesirable sequence modifications. Qualitative and quantitative comparison showed similar performance between an interleaved navigator-equivalent method and proposed method. CONCLUSION: It is feasible to predict B0 maps from rigid subject movement and, when combined with external tracking hardware, this information could be used to improve the quality of MR acquisitions without the use of navigators.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Movimento (Física) , Movimento , Processamento de Imagem Assistida por Computador/métodos , Artefatos
5.
Neuroimage ; 283: 120419, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871759

RESUMO

Quantitative Susceptibility Mapping has the potential to provide additional insights into neurological diseases but is typically based on a quite long (5-10 min) 3D gradient-echo scan which is highly sensitive to motion. We propose an ultra-fast acquisition based on three orthogonal (sagittal, coronal and axial) 2D simultaneous multi-slice EPI scans with 1 mm in-plane resolution and 3 mm thick slices. Images in each orientation are corrected for susceptibility-related distortions and co-registered with an iterative non-linear Minimum Deformation Averaging (Volgenmodel) approach to generate a high SNR, super-resolution data set with an isotropic resolution of close to 1 mm. The net acquisition time is 3 times the volume acquisition time of EPI or about 12 s, but the three volumes could also replace "dummy scans" in fMRI, making it feasible to acquire QSM in little or No Additional Time for Imaging (NATIve). NATIve QSM values agreed well with reference 3D GRE QSM in the basal ganglia in healthy subjects. In patients with multiple sclerosis, there was also a good agreement between the susceptibility values within lesions and control ROIs and all lesions which could be seen on 3D GRE QSMs could also be visualized on NATIve QSMs. The approach is faster than conventional 3D GRE by a factor of 25-50 and faster than 3D EPI by a factor of 3-5. As a 2D technique, NATIve QSM was shown to be much more robust to motion than the 3D GRE and 3D EPI, opening up the possibility of studying neurological diseases involving iron accumulation and demyelination in patients who find it difficult to lie still for long enough to acquire QSM data with conventional methods.


Assuntos
Imagem Ecoplanar , Humanos , Imagem Ecoplanar/métodos , Gânglios da Base/diagnóstico por imagem
6.
Hum Brain Mapp ; 44(15): 5095-5112, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37548414

RESUMO

The boundaries between tissues with different magnetic susceptibilities generate inhomogeneities in the main magnetic field which change over time due to motion, respiration and system instabilities. The dynamically changing field can be measured from the phase of the fMRI data and corrected. However, methods for doing so need multi-echo data, time-consuming reference scans and/or involve error-prone processing steps, such as phase unwrapping, which are difficult to implement robustly on the MRI host. The improved dynamic distortion correction method we propose is based on the phase of the single-echo EPI data acquired for fMRI, phase offsets calculated from a triple-echo, bipolar reference scan of circa 3-10 s duration using a method which avoids the need for phase unwrapping and an additional correction derived from one EPI volume in which the readout direction is reversed. This Reverse-Encoded First Image and Low resoLution reference scan (REFILL) approach is shown to accurately measure B0 as it changes due to shim, motion and respiration, even with large dynamic changes to the field at 7 T, where it led to a > 20% increase in time-series signal to noise ratio compared to data corrected with the classic static approach. fMRI results from REFILL-corrected data were free of stimulus-correlated distortion artefacts seen when data were corrected with static field mapping. The method is insensitive to shim changes and eddy current differences between the reference scan and the fMRI time series, and employs calculation steps that are simple and robust, allowing most data processing to be performed in real time on the scanner image reconstruction computer. These improvements make it feasible to routinely perform dynamic distortion correction in fMRI.


Assuntos
Mapeamento Encefálico , Encéfalo , Imagem Ecoplanar , Humanos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imagem Ecoplanar/métodos , Artefatos
7.
Hum Brain Mapp ; 44(3): 1209-1226, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36401844

RESUMO

Of the sources of noise affecting blood oxygen level-dependent functional magnetic resonance imaging (fMRI), respiration and cardiac fluctuations are responsible for the largest part of the variance, particularly at high and ultrahigh field. Existing approaches to removing physiological noise either use external recordings, which can be unwieldy and unreliable, or attempt to identify physiological noise from the magnitude fMRI data. Data-driven approaches are limited by sensitivity, temporal aliasing, and the need for user interaction. In the light of the sensitivity of the phase of the MR signal to local changes in the field stemming from physiological processes, we have developed an unsupervised physiological noise correction method using the information carried in the phase and the magnitude of echo-planar imaging data. Our technique, Physiological Regressor Estimation from Phase and mAgnItude, sub-tR (PREPAIR) derives time series signals sampled at the slice TR from both phase and magnitude images. It allows physiological noise to be captured without aliasing, and efficiently removes other sources of signal fluctuations not related to physiology, prior to regressor estimation. We demonstrate that the physiological signal time courses identified with PREPAIR agree well with those from external devices and retrieve challenging cardiac dynamics. The removal of physiological noise was as effective as that achieved with the most used approach based on external recordings, RETROICOR. In comparison with widely used recording-free physiological noise correction tools-PESTICA and FIX, both performed in unsupervised mode-PREPAIR removed significantly more respiratory and cardiac noise than PESTICA, and achieved a larger increase in temporal signal-to-noise-ratio at both 3 and 7 T.


Assuntos
Encéfalo , Respiração , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Razão Sinal-Ruído , Imageamento por Ressonância Magnética/métodos , Imagem Ecoplanar , Artefatos , Mapeamento Encefálico/métodos
8.
Magn Reson Med ; 87(3): 1289-1300, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34687073

RESUMO

PURPOSE: Quantitative susceptibility mapping (QSM) estimates the spatial distribution of tissue magnetic susceptibilities from the phase of a gradient-echo signal. QSM algorithms require a signal mask to delineate regions with reliable phase for subsequent susceptibility estimation. Existing masking techniques used in QSM have limitations that introduce artifacts, exclude anatomical detail, and rely on parameter tuning and anatomical priors that narrow their application. Here, a robust masking and reconstruction procedure is presented to overcome these limitations and enable automated QSM processing. Moreover, this method is integrated within an open-source software framework: QSMxT. METHODS: A robust masking technique that automatically separates reliable from less reliable phase regions was developed and combined with a two-pass reconstruction procedure that operates on the separated sources before combination, extracting more information and suppressing streaking artifacts. RESULTS: Compared with standard masking and reconstruction procedures, the two-pass inversion reduces streaking artifacts caused by unreliable phase and high dynamic ranges of susceptibility sources. It is also robust across a range of acquisitions at 3 T in volunteers and phantoms, at 7 T in tumor patients, and in an in silico head phantom, with significant artifact and error reductions, greater anatomical detail, and minimal parameter tuning. CONCLUSION: The two-pass masking and reconstruction procedure separates reliable from less reliable phase regions, enabling a more accurate QSM reconstruction that mitigates artifacts, operates without anatomical priors, and requires minimal parameter tuning. The technique and its integration within QSMxT makes QSM processing more accessible and robust to streaking artifacts.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas
9.
Magn Reson Med ; 87(3): 1461-1479, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34850446

RESUMO

PURPOSE: To address the challenges posed by fat-water chemical shift artifacts and relaxation rate discrepancies to quantitative susceptibility mapping (QSM) outside the brain, and to generate accurate susceptibility maps of the head-and-neck at 3 and 7 Tesla. METHODS: Simultaneous Multiple Resonance Frequency (SMURF) imaging was extended to 7 Tesla and used to acquire head-and-neck gradient echo images at both 3 and 7 Tesla. Separated fat and water images were corrected for Type 1 (displacement) and Type 2 (phase discrepancy) chemical shift artefacts, and for the bias resulting from differences in T1 and T2∗ relaxation rates, recombined and used as the basis for QSM. A novel phase signal-based masking approach was used to generate head-and-neck masks. RESULTS: SMURF generated well-separated fat and water images of the head-and-neck. Corrections for chemical shift artefacts and relaxation rate differences removed overestimation of the susceptibility values, blurring in the susceptibility maps, and the disproportionate influence of fat in mixed voxels. The resulting susceptibility maps showed high correspondence between the paramagnetic areas and the locations of fatty tissues and the susceptibility estimates were similar to literature values. The proposed masking approach was shown to provide a simple means of generating head-and-neck masks. CONCLUSION: Corrections for Type 1 and Type 2 chemical shift artefacts and for fat-water relaxation rate differences, mainly in T1 , were shown to be required for accurate susceptibility mapping of fatty-body regions. SMURF made it possible to apply these corrections and generate high-quality susceptibility maps of the entire head-and-neck at both 3 and 7 Tesla.


Assuntos
Imageamento por Ressonância Magnética , Água , Artefatos , Encéfalo , Cabeça , Processamento de Imagem Assistida por Computador
10.
Front Phys ; 9: 665562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34849373

RESUMO

Fat fraction quantification and assessment of its distribution in the hepatic tissue become more important with the growing epidemic of obesity, and the increasing prevalence of diabetes mellitus type 2 and non-alcoholic fatty liver disease. At 3Tesla, the multi-echo, chemical-shift-encoded magnetic resonance imaging (CSE-MRI)-based acquisition allows the measurement of proton density fat-fraction (PDFF) even in clinical protocols. Further improvements in SNR can be achieved by the use of phased array coils and increased static magnetic field. The purpose of the study is to evaluate the feasibility of PDFF imaging using a multi-echo CSE-MRI technique at ultra-high magnetic field (7Tesla). Thirteen volunteers (M/F) with a broad range of age, body mass index, and hepatic PDFF were measured at 3 and 7T by multi-gradient-echo MRI and single-voxel spectroscopy MRS. All measurements were performed in breath-hold (exhalation); the MRI protocols were optimized for a short measurement time, thus minimizing motion-related problems. 7T data were processed off-line using Matlab® (MRI:multi-gradient-echo) and jMRUI (MRS), respectively. For quantitative validation of the PDFF results, a similar protocol was performed at 3T, including on-line data processing provided by the system manufacturer, and correlation analyses between 7 and 3T data were performed off-line. The multi-echo CSE-MRI measurements at 7T with a phased-array coil configuration and an optimal post-processing yielded liver volume coverage ranging from 30 to 90% for high- and low-BMI subjects, respectively. PDFFs ranged between 1 and 20%. We found significant correlations between 7T MRI and -MRS measurements (R2 ≅ 0.97; p < 0.005), and between MRI-PDFF at 7T and 3T fields (R2 ≅ 0.94; p < 0.005) in the evaluated volumes. Based on the measurements and analyses performed, the multi-echo CSE-MRI method using a 32-channel coil at 7T showed its aptitude for MRI-based quantitation of PDFF in the investigated volumes. The results are the first step toward qMRI of the whole liver at 7T with further improvements in hardware.

11.
Neuroimage ; 237: 118175, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34000407

RESUMO

PURPOSE: Susceptibility Weighted Imaging (SWI) has become established in the clinical investigation of stroke, microbleeds, tumor vascularization, calcification and iron deposition, but suffers from a number of shortcomings and artefacts. The goal of this study was to reduce the sensitivity of SWI to strong B1 and B0 inhomogeneities at ultra-high field to generate homogeneous images with increased contrast and free of common artefacts. All steps in SWI processing have been addressed - coil combination, phase unwrapping, image combination over echoes, phase filtering and homogeneity correction - and applied to an efficient bipolar multi-echo acquisition to substantially improve the quality of SWI. PRINCIPAL RESULTS: Our findings regarding the optimal individual processing steps lead us to propose a Contrast-weighted, Laplace-unwrapped, bipolar multi-Echo, ASPIRE-combined, homogeneous, improved Resolution SWI, or CLEAR-SWI. CLEAR-SWI was compared to two other multi-echo SWI methods and standard, single-echo SWI with the same acquisition time at 7 T in 10 healthy volunteers and with single-echo SWI in 13 patients with brain tumors. CLEAR-SWI had improved contrast-to-noise and homogeneity, reduced signal dropout and was not compromised by the artefacts which affected standard SWI in 10 out of 13 cases close to tumors (as assessed by expert raters), as well as generating T2* maps and phase images which can be used for Quantitative Susceptibility Mapping. In a comparison with other multi-echo SWI methods, CLEAR-SWI had the fewest artefacts, highest SNR and generally higher contrast-to-noise. MAJOR CONCLUSIONS: CLEAR-SWI eliminates the artefacts common in standard, single-echo SWI, reduces signal dropouts and improves image homogeneity and contrast-to-noise. Applied clinically, in a study of brain tumor patients, CLEAR-SWI was free of the artefacts which affected standard, single-echo SWI.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Imagem Ecoplanar/normas , Processamento de Imagem Assistida por Computador/normas , Neuroimagem/normas , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
Magn Reson Med ; 85(4): 2294-2308, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33104278

RESUMO

PURPOSE: To develop a rapid and accurate MRI phase-unwrapping technique for challenging phase topographies encountered at high magnetic fields, around metal implants, or postoperative cavities, which is sufficiently fast to be applied to large-group studies including Quantitative Susceptibility Mapping and functional MRI (with phase-based distortion correction). METHODS: The proposed path-following phase-unwrapping algorithm, ROMEO, estimates the coherence of the signal both in space-using MRI magnitude and phase information-and over time, assuming approximately linear temporal phase evolution. This information is combined to form a quality map that guides the unwrapping along a 3D path through the object using a computationally efficient minimum spanning tree algorithm. ROMEO was tested against the two most commonly used exact phase-unwrapping methods, PRELUDE and BEST PATH, in simulated topographies and at several field strengths: in 3T and 7T in vivo human head images and 9.4T ex vivo rat head images. RESULTS: ROMEO was more reliable than PRELUDE and BEST PATH, yielding unwrapping results with excellent temporal stability for multi-echo or multi-time-point data. It does not require image masking and delivers results within seconds, even in large, highly wrapped multi-echo data sets (eg, 9 seconds for a 7T head data set with 31 echoes and a 208 × 208 × 96 matrix size). CONCLUSION: Overall, ROMEO was both faster and more accurate than PRELUDE and BEST PATH, delivering exact results within seconds, which is well below typical image acquisition times, enabling potential on-console application.


Assuntos
Algoritmos , Encéfalo , Animais , Encéfalo/diagnóstico por imagem , Cabeça , Imageamento por Ressonância Magnética , Ratos
13.
Magn Reson Med ; 85(3): 1379-1396, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32981114

RESUMO

PURPOSE: To develop a fat-water imaging method that allows reliable separation of the two tissues, uses established robust reconstruction methods, and requires only one single-echo acquisition. THEORY AND METHODS: The proposed method uses spectrally selective dual-band excitation in combination with CAIPIRINHA to generate separate images of fat and water simultaneously. Spatially selective excitation without cross-contamination is made possible by the use of spatial-spectral pulses. Fat and water images can either be visualized separately, or the fat images can be corrected for chemical shift displacement and, in gradient echo imaging, for chemical shift-related phase discrepancy, and recombined with water images, generating fat-water images free of chemical shift effects. Gradient echo and turbo spin echo sequences were developed based on this Simultaneous Multiple Resonance Frequency imaging (SMURF) approach and their performance was assessed at 3Tesla in imaging of the knee, breasts, and abdomen. RESULTS: The proposed method generated well-separated fat and water images with minimal unaliasing artefacts or cross-excitation, evidenced by the near absence of water signal attributed to the fat image and vice versa. The separation achieved was similar to or better than that using separate acquisitions with water- and fat-saturation or Dixon methods. The recombined fat-water images provided similar image contrast to conventional images, but the chemical shift effects were eliminated. CONCLUSION: Simultaneous Multiple Resonance Frequency imaging is a robust fat-water imaging technique that offers a solution to imaging of body regions with significant amounts of fat.


Assuntos
Diagnóstico por Imagem , Água , Tecido Adiposo/diagnóstico por imagem , Artefatos , Testes Diagnósticos de Rotina , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Vibração
14.
Mov Disord ; 35(1): 142-150, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518459

RESUMO

BACKGROUND: Mitochondrial membrane protein-associated neurodegeneration is an autosomal-recessive disorder caused by C19orf12 mutations and characterized by iron deposits in the basal ganglia. OBJECTIVES: The aim of this study was to quantify iron concentrations in deep gray matter structures using quantitative susceptibility mapping MRI and to characterize metabolic abnormalities in the pyramidal pathway using 1 H MR spectroscopy in clinically manifesting membrane protein-associated neurodegeneration patients and asymptomatic C19orf12 gene mutation heterozygous carriers. METHODS: We present data of 4 clinically affected membrane protein-associated neurodegeneration patients (mean age: 21.0 ± 2.9 years) and 9 heterozygous gene mutation carriers (mean age: 50.4 ± 9.8 years), compared to age-matched healthy controls. MRI assessments were performed on a 7.0 Tesla whole-body system, consisting of whole-brain gradient-echo scans and short echo time, single-volume MR spectroscopy in the white matter of the precentral/postcentral gyrus. Quantitative susceptibility mapping, a surrogate marker for iron concentration, was performed using a state-of-the-art multiscale dipole inversion approach with focus on the globus pallidus, thalamus, putamen, caudate nucleus, and SN. RESULTS AND CONCLUSION: In membrane protein-associated neurodegeneration patients, magnetic susceptibilities were 2 to 3 times higher in the globus pallidus (P = 0.02) and SN (P = 0.02) compared to controls. In addition, significantly higher magnetic susceptibility was observed in the caudate nucleus (P = 0.02). Non-manifesting heterozygous mutation carriers exhibited significantly increased magnetic susceptibility (relative to controls) in the putamen (P = 0.003) and caudate nucleus (P = 0.001), which may be an endophenotypic marker of genetic heterozygosity. MR spectroscopy revealed significantly increased levels of glutamate, taurine, and the combined concentration of glutamate and glutamine in membrane protein-associated neurodegeneration, which may be a correlate of corticospinal pathway dysfunction frequently observed in membrane protein-associated neurodegeneration patients. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Encéfalo/patologia , Ferro/metabolismo , Proteínas Mitocondriais/genética , Mutação/genética , Encéfalo/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo
15.
Invest Radiol ; 54(6): 340-348, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30724813

RESUMO

OBJECTIVES: Gradients in the static magnetic field caused by tissues with differing magnetic susceptibilities lead to regional variations in the effective echo time, which modifies both image signal and BOLD sensitivity. Local echo time changes are not considered in the most commonly used metric for BOLD sensitivity, temporal signal-to-noise ratio (tSNR), but may be significant, particularly at ultrahigh field close to air cavities (such as the sinuses and ear canals) and near gross brain pathologies and postoperative sites. MATERIALS AND METHODS: We have studied the effect of local variations in echo time and tSNR on BOLD sensitivity in 3 healthy volunteers and 11 patients with tumors, postoperative cavities, and venous malformations at 7 T. Temporal signal-to-noise ratio was estimated from a 5-minute run of resting state echo planar imaging with a nominal echo time of 22 milliseconds. Maps of local echo time were derived from the phase of a multiecho GE scan. One healthy volunteer performed 10 runs of a breath-hold task. The t-map from this experiment served as a criterion standard BOLD sensitivity measure. Two runs of a less demanding breath-hold paradigm were used for patients. RESULTS: In all subjects, a strong reduction in the echo time (from 22 milliseconds to around 11 milliseconds) was found close to the ear canals and sinuses. These regions were characterized by high tSNR but low t-values in breath-hold t-maps. In some patients, regions of particular interest in presurgical planning were affected by reductions in the echo time to approximately 13-15 milliseconds. These included the primary motor cortex, Broca's area, and auditory cortex. These regions were characterized by high tSNR values (70 and above). Breath-hold results were corrupted by strong motion artifacts in all patients. CONCLUSIONS: Criterion standard BOLD sensitivity estimation using hypercapnic experiments is challenging, especially in patient populations. Taking into consideration the tSNR, commonly used for BOLD sensitivity estimation, but ignoring local reductions in the echo time (eg, from 22 to 11 milliseconds), would erroneously suggest functional sensitivity sufficient to map BOLD signal changes. It is therefore important to consider both local variations in the echo time and temporal variations in signal, using the product metric of these two indices for instance. This should ensure a reliable estimation of BOLD sensitivity and to facilitate the identification of potential false-negative results. This is particularly true at high fields, such as 7 T and in patients with large pathologies and postoperative cavities.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Imagem Ecoplanar/métodos , Interpretação de Imagem Assistida por Computador/métodos , Cuidados Pré-Operatórios/métodos , Artefatos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Suspensão da Respiração , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento (Física) , Razão Sinal-Ruído
16.
Neuroimage ; 168: 477-489, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-27851995

RESUMO

The growing interest in ultra-high field MRI, with more than 35.000 MR examinations already performed at 7T, is related to improved clinical results with regard to morphological as well as functional and metabolic capabilities. Since the signal-to-noise ratio increases with the field strength of the MR scanner, the most evident application at 7T is to gain higher spatial resolution in the brain compared to 3T. Of specific clinical interest for neuro applications is the cerebral cortex at 7T, for the detection of changes in cortical structure, like the visualization of cortical microinfarcts and cortical plaques in Multiple Sclerosis. In imaging of the hippocampus, even subfields of the internal hippocampal anatomy and pathology may be visualized with excellent spatial resolution. Using Susceptibility Weighted Imaging, the plaque-vessel relationship and iron accumulations in Multiple Sclerosis can be visualized, which may provide a prognostic factor of disease. Vascular imaging is a highly promising field for 7T which is dealt with in a separate dedicated article in this special issue. The static and dynamic blood oxygenation level-dependent contrast also increases with the field strength, which significantly improves the accuracy of pre-surgical evaluation of vital brain areas before tumor removal. Improvement in acquisition and hardware technology have also resulted in an increasing number of MR spectroscopic imaging studies in patients at 7T. More recent parallel imaging and short-TR acquisition approaches have overcome the limitations of scan time and spatial resolution, thereby allowing imaging matrix sizes of up to 128×128. The benefits of these acquisition approaches for investigation of brain tumors and Multiple Sclerosis have been shown recently. Together, these possibilities demonstrate the feasibility and advantages of conducting routine diagnostic imaging and clinical research at 7T.


Assuntos
Encefalopatias/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Neuroimagem/métodos , Encefalopatias/metabolismo , Encefalopatias/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Humanos , Imageamento por Ressonância Magnética/normas , Espectroscopia de Ressonância Magnética/normas , Neuroimagem/normas
17.
Magn Reson Med ; 79(1): 97-107, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28247561

RESUMO

PURPOSE: Quantitative susceptibility mapping is a technique to estimate the magnetic property of tissue with particularly high sensitivity at ultra-high field. However, a key challenge at ultra-high field is the combination of phase data acquired using phased array receive coils. Several methods for combining phase data have been proposed, but the influence of coil combination choices on susceptibility quantitation has not been studied systematically. METHODS: We combined phase data using COMPOSER (COMbining Phase data using a Short Echo-time Reference scan) and a reference-free channel-by-channel method. We investigated the effect of the chosen combination method on susceptibility results in a group of 28 participants at 7 Tesla. RESULTS: Our results show that reference scans can bias susceptibility values. Although the proposed reference-free channel-by-channel method cannot remove transmit field phase, it shows comparable results to the COMPOSER method in which a high-resolution ultrashort echo-time reference scan was used. CONCLUSIONS: We conclude that ultrashort echo-time reference scans reduce quantitation bias and remove the transmit field phase when using COMPOSER to combine phase data, and not combining the phase data before susceptibility processing avoids this bias, resulting in comparable results. Magn Reson Med 79:97-107, 2018. © 2017 InternationalSociety for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem Ecoplanar/métodos , Magnetismo , Adulto , Algoritmos , Mapeamento Encefálico/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
18.
Neuroimage ; 168: 490-498, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28027961

RESUMO

Presurgical planning with fMRI benefits from increased reliability and the possibility to reduce measurement time introduced by using ultra-high field. Echo-planar imaging suffers, however, from geometric distortions which scale with field strength and potentially give rise to clinically significant displacement of functional activation. We evaluate the effectiveness of a dynamic distortion correction (DDC) method based on unmodified single-echo EPI in the context of simulated presurgical planning fMRI at 7T and compare it with static distortion correction (SDC). The extent of distortion in EPI and activation shifts are investigated in a group of eleven patients with a range of neuropathologies who performed a motor task. The consequences of neglecting to correct images for susceptibility-induced distortions are assessed in a clinical context. It was possible to generate time series of EPI-based field maps which were free of artifacts in the eloquent brain areas relevant to presurgical fMRI, despite the presence of signal dropouts caused by pathologies and post-operative sites. Distortions of up to 5.1mm were observed in the primary motor cortex in raw EPI. These were accurately corrected with DDC and slightly less accurately with SDC. The dynamic nature of distortions in UHF clinical fMRI was demonstrated via investigation of temporal variation in voxel shift maps, confirming the potential inadequacy of SDC based on a single reference field map, particularly in the vicinity of pathologies or in the presence of motion. In two patients, the distortion correction was potentially clinically significant in that it might have affected the localization or interpretation of activation and could thereby have influenced the treatment plan. Distortion correction is shown to be effective and clinically relevant in presurgical planning at 7T.


Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Transtornos Cerebrovasculares/diagnóstico por imagem , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Córtex Motor/diagnóstico por imagem , Adulto , Artefatos , Mapeamento Encefálico/normas , Neoplasias Encefálicas/cirurgia , Transtornos Cerebrovasculares/cirurgia , Imagem Ecoplanar/normas , Feminino , Humanos , Processamento de Imagem Assistida por Computador/normas , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiologia , Procedimentos Neurocirúrgicos , Cuidados Pré-Operatórios
19.
Magn Reson Med ; 79(6): 2996-3006, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29034511

RESUMO

PURPOSE: To develop a simple method for combining multi-echo phase information from a number of coils in an array that requires no volume coil or additional scans and yields signal-to-noise ratio-optimal images that reflect only ΔB0-related phase. THEORY AND METHODS: Two SNR optimal coil combination methods were developed which retrieve the ΔB0-related phase by determining the coil-dependent phase offsets. The first variant, MCPC-3D-S, requires the unwrapping of one phase image; the second variant, ASPIRE, allows unwrapping to be avoided if two echoes j and k satisfy the echo time relation m⋅TEk=(m+1)⋅TEj, where m is an integer, making this a particularly fast and robust approach. Both developed methods constitute improvements over a prior method, MCPC-3D, in terms of robustness and computational expense. RESULTS: In the brain at 7 T, phase matching and contrast-to-noise ratio were higher with MCPC-3D-S and ASPIRE than with phase difference reconstruction, and similar to the reference coil-dependent Roemer combination. Unlike the Roemer and virtual reference coil methods, the proposed approaches also eliminated all non- ΔB0-related phase. CONCLUSION: MCPC-3D-S is an improvement over prior multi-echo methods, which is useful if the ASPIRE echo time condition cannot be fulfilled. ASPIRE is a particularly fast and robust approach that runs on the scanner's reconstructor in a small fraction of the acquisition time. Magn Reson Med 79:2996-3006, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Simulação por Computador , Meios de Contraste/química , Voluntários Saudáveis , Humanos , Aumento da Imagem/métodos , Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Razão Sinal-Ruído
20.
Hum Brain Mapp ; 38(6): 3163-3174, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28321965

RESUMO

Functional MRI is valuable in presurgical planning due to its non-invasive nature, repeatability, and broad availability. Using ultra-high field MRI increases the specificity and sensitivity, increasing the localization reliability and reducing scan time. Ideally, fMRI analysis for this application should identify unreliable runs and work even if the patient deviates from the prescribed task timing or if there are changes to the hemodynamic response due to pathology. In this study, a model-free analysis method-UNBIASED-based on the consistency of fMRI responses over runs was applied, to ultra-high field fMRI localizations of the hand area. Ten patients with brain tumors and epilepsy underwent 7 Tesla fMRI with multiple runs of a hand motor task in a block design. FMRI data were analyzed with the proposed approach (UNBIASED) and the conventional General Linear Model (GLM) approach. UNBIASED correctly identified and excluded fMRI runs that contained little or no activation. Generally, less motion artifact contamination was present in UNBIASED than in GLM results. Some cortical regions were identified as activated in UNBIASED but not GLM results. These were confirmed to show reproducible delayed or transient activation, which was time-locked to the task. UNBIASED is a robust approach to generating activation maps without the need for assumptions about response timing or shape. In presurgical planning, UNBIASED can complement model-based methods to aid surgeons in making prudent choices about optimal surgical access and resection margins for each patient, even if the hemodynamic response is modified by pathology. Hum Brain Mapp 38:3163-3174, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Epilepsia/fisiopatologia , Imageamento por Ressonância Magnética , Adolescente , Adulto , Encéfalo/fisiopatologia , Eletroencefalografia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...